Unique Paper Code	:	32341502-OC
Name of the Course	:	B.Sc. Honours (CBCS)
Name of the Paper	:	Theory of Computation
Semester	:	V
Year of Admission	:	2015, 2016, 2017, 2018

Duration: 3 Hours

Maximum Marks: 75

Instruction for candidates

- 1. All questions carry equal marks.
- 2. Assume $\Sigma = \{a, b\}$ as the underlying alphabet set unless mentioned otherwise.

Attempt any Four Questions out of six Questions.

1.	Build a deterministic finite automaton (DFA) that accepts the language L, where
	$L = \{ a^i b^j (i+j) \text{ is not divisible by } 2 \}$. Also convert the above DFA into regular expression using bypass algorithm.
2.	For languages L_1 and L_2 described by the corresponding regular expressions
	$(\mathbf{a} + \mathbf{b})^* \mathbf{a}$ and $(\mathbf{a} + \mathbf{b})^* \mathbf{b}$, construct the following a) DFA for L1 and L2 and b)
	finite automata that define $L_1 \cap L_2$. Trace the word "aabb" on the constructed finite
	automata.
3.	Let $\Sigma = \{a\}$ and $L \in \{a^p \mid p \text{ is a prime}\}.$
	Are the languages L , L^* (kleene closure of L), and L' (complement of L) regular?
	Justify your answers. Wherever possible, construct the corresponding DFA.
	WIND CITY
4.	Let $X \in \{a, b, c\}$ and let L be a language defined as $L = \{a^n b^{n+m} c^m n, m \ge 1\}$.
	Construct a CFG that generates the language L. Also construct a pushdown automata
	(PDA) for the language L.
5.	Consider the following grammar:
	$S \to 0A0 1B1 BB$
	$A \rightarrow C$
	$\begin{array}{c c} B \rightarrow S A \\ C \rightarrow S + A \end{array}$
	$C \rightarrow S \Lambda$
	Eliminate Λ -productions (null productions) followed by the elimination of unit
	productions in the resulting grammar. Finally after removing any useless symbols,
	convert the grammar into Chomsky Normal Form.

6.	Design a 2-tape Turing Machine (TM) that computes the bitwise AND of two input											
	sequences. The first tape contains $\sqcup w_1 # w_2 \amalg$, where w_1 , w_2 are bitwise input											
	sequences and '#' is a separator between input sequences.											
	Trace	the	computation	of	TM	when	content	of	the	first	tape	is
	⊔101#1	10旦	and second tap	be is	empty							

tomation Sundra.com